The combination of chitosan (C) with alginate (A) has been explored for the production of dressings due to the positive results on wound healing. CA films can show a dense or porous flexible structure, with characteristics tunable for different applications. Porosity and flexibility can be achieved, respectively, by the addition of surfactants such as Kolliphor® P188 (P) and silicone-based compounds as Silpuran® 2130 A/B (S). Furthermore, composite matrices of these polysaccharides have potential applications as devices for releasing bioactive compounds to skin lesions. The purpose of this study was to evaluate the physicochemical and biological characteristics of flexible dense and porous CA membranes incorporating the standardized extract of Arrabidaea chica Verlot (A. chica), and also to analyze the release mechanism of the extract from different membrane formulations. The results show that the inclusion of P in the formulation allows obtaining porous matrices, promotes greater homogeneity of the mixture of the silicone gel with the suspension of polysaccharides, and increases the swelling of the polymer matrix. All formulations presented high stability, reaching a maximum mass loss of 18% after seven days. The formulations with S showed the best performance in terms of flexibility and strain at break. The presence of A. chica standardized extract did not affect negatively the characteristics of the membranes. Incorporation efficiencies of the bioactive compound above 87% were achieved, and the addition of P and S to the membrane formulation changed the release of the A. chica extract kinetics. In addition, the developed formulations did not significantly affect Vero cells proliferation.